y

Mac OS X
Networking Overview
Session 803

y

Mac OS5 X
Networking Overview

Vincent Lubet
Manager, Core OS Networking Team

Agenda

* Networking architecture

*\W
*\W

nat’s new

nat are the APIs

* Hints and tips
* What's next

Networking in Mac OS X

Application
Environments

Networking

ATalk IP
Core OS

Networking in Mac OS X

Ongoing Goals

* Fase of use

* Performance

* Better extensibility

* Standards compliance

Networking in Mac OS X

Architecture

* Extensible
* TCP/IP and AppleTalk protocol stacks
* Ethernet and PPP drivers

* |P Firewall and NAT

* Dynamic configuration

e /eroConf

CO

re Networking

Based on FreeBSD

* ROl

bust and proven implementation

* PO

pular API (Sockets)

* Easy-to-port Unix-like applications

« Lots of open-source code available

* New in Jaguar

e FreeBSD 4.4 network stack in Jaguar
e Up-to-date IPFirewall and natd

e [Pv6 and IPSec based on KAME

« PPTP

Networking in Mac OS X

Apple added value to FreeBSD

e Multi-threaded and MP efficient
* Tuned network bufter allocation

* Extensible—no need to recompile the kernel
» Kernel development comes with

lots of responsi

ility

e More about NK

5 in Session 809

[Pv6

* Available in Jaguar

* Addresses Internet growth concerns
* Automatic configuration

* APIs to be address family agnostic

* See Session 809 for more info

[PSec

* [ETF standard to secure Internet traffic

* Jaguar has APIs and protocol implementation
* Foundation for VPN solutions

* For IPv4 and IPv6

* See Session 809 for more info

PPP

* Based on pppd

* Apple enhancements
« PPPOE

 CCL scripts

 OT/PPP control API
» Integrated in SystemContfig

* New on Jaguar PPTP client
 Windows VPN connectivity

Also New in Jaguar

* A lot of bug fixes
* Performance improvements

* Detaching network interfaces

* New and updated man pages

* PF NDRV works (userland protocol stacks)
* SNMP (net-snmp)

Network Configuration

* Preferences specify network “services”
« Ethernet
e AirPort
« PPP

* More than one “service” can be active at a time
* Configuration dynamically updated
* Managed using System Configuration framework

¢

System Configuration
Framework

* APIs providing access to requested configuration
* APIs providing access to current state of the network

* APIs to check network accessiblity
« “Am I connected”
« Replacement for TCPWillDial

* APIs to be notified when something changes
* Available in 10.1 and later
* MoreSCF DTS sample code :

Rendezvous

* New in Jaguar

* Local networking that “always” work
* Fasy to use like AppleTalk but . .

* . .using industry-standard TCP/IP
* Make existing network products better

*Ma

ke possible entirely new products

* See Session 811 for more info

Coding for Network Applications

Do not poll

* Polling uses 100% of CPU
* Hurts other processes and uses more power

* [nstead block or be event driven
* Multiplex endpoints

Coding for Network Applications

Buffer sizes

* Size of buffers is critical for networking performance
» Too small == high context switch overhead
» Too large = = starves VM for bufters

* Things to tune
o Socket buffer size
o Size of butfer with end/receive calls

* Receive socket buffer size directly affects
TCP window size

Coding for Network Applications

Dynamic configuration

* Computer does not have a single IP address
* [P addresses change over time

* Servers should bind to the “Any IP” address
* Clients bind to nil
* More than one address is the norm: IPv4 and IPv6

* Do not assume [Pv4 (SIOCGIFCONF)
» Use getifaddrs() instead

¢

Coding for Network Applications

Privileged operation

* Bind to low number port
e Less than 1024

* Open raw socket

* Open bpf device

*Open PF NDRV socket

*Open PF KEY socket

*See DTS sample code AuthSample

Sockets API

* Native API to get the most out of the OS
* Lots of publicly available code
* Unix Network Programming by Stevens

* Carbon applications can eliminate sockets
emulation layer over OT

* Mac OS X has a rich set of higher level
networking APIs above Sockets

y

Networking APIs Above the OS

Becky Willrich
Application Frameworks

Networking APIs Above the OS

* What APIs are available
*Each APl in depth
 What it does
» Strengths
e Limitations
« When should you use it
« What's new

Networking APIs Above the OS

* URL Access (Carbon)

* Internet Contfig (Carbon)

* NSURL and NSURLHandle (Cocoa)

* NSNetService and NSNetServiceBrowser (Cocoa)
* CFNetwork (Core Services)

* WebServicesCore (Core Services)

* CFURL, CFSocket, CFStream (Core Services)

* Open Transport (Core Services)

How Does It Fit In?

Core Services

How Does It Fit In?

Carbon URLAccess Cocoa NSNetServices
. NSURL and
Internet Config NSURL Handle

Core Web Services CFStream

! CFSocket oT
Services CFNetwork CFURL

R BSD Sockets

URL Access

* Provides APIs for up- and downloading URLs
* Focused on “just get the URL”
» Automatically picks up system settings
» Few scheme-specific options
* Supports http, https, ftp, file
* Part of Carbon; compatible back to Mac OS 8.6

URL Access—Strengths

* Simple, high-level API
* Options for extra processing on download
» Populate a file/directory

* Options for adding UI elements
(progress panel, authentication)

* Source-compatibility to Mac OS 9

URL Access—Limitations

* No way to add support for missing schemes
* API is showing its age

* Unimplemented features
e Progress bar via URLUpload()/URLDownload ()
» Automatic decompression

* Some issues around pthreads and cooperative
threads co-existing

URL Access—When to Use It

* If you need a strategy for both Mac OS 9
and Mac OS X

* [f you need a scheme-agnostic, Carbon strategy

* [f you don’t want to get involved in the details
of the download

URL Access—What’s New

* Progress display from URLOpen()

* Unsuccesstully transferred files cleaned
off the disk

* Redirection enabled
* Better event handling and notification

* Better error handling

[nternet Contfig

* Holds “networking” settings
 Web proxies
» Helper apps for downloading kinds of URLs

« MIME type to type/creator to extension
mappings

» App-specific preferences
» Some user preferences (mail account, . .) -
* Legacy Carbon API

Internet Config—Strengths

* Well-known, well-understood API

* Only option on Mac OS 9
* Source compatibility with Mac OS 9

[nternet Config—Limitations

* Implementation on Mac OS X is inefficient
» Using ICBegin/ICEnd helps

* Some settings are dated or insufficient

* Some settings are completely obsolete
» GetConfigFile and friends

* No longer the repository for many settings

» Calls through to System Configuration or
Launch Services in many cases

* Forces higher-level linkage than warranted

Internet Config—When to Use It

* Use IC only if there is no other choice
* Use System Configuration for proxy settings

* Use Launch Services to open particular files
or URLS
LSOpenFSRef(), LSOpenCFURLRef()

* Launch Services also provides MIME type
to handler mappings

* Use CFPreferences for app-specific preferences
» This is a performance burden for all IC clients d

Internet Config—What’s New

*Nothing . . -

NSURL and NSURLHandle

* Cocoa “get the URL” API
* Two classes inside Foundation
 NSURL represents a URL (bridged to CFURL)

 NSURLHandle actually performs the
up/download

* Primarily designed as an infrastructure
for handling URLSs

* http, https, ftp, file supported

NSURLHandle—Strengths

* Integrated with the run loop
» Asynchronous APIs do not spawn threads
* Extensible via subclassing

* Well integrated into Cocoa APIs

[[NSImage alloc]
initWithContentsOfURL:myURL];

* Good performance under load (used by Mail
from the main thread for HTML mail)

NSURLHandle—Limitations

* Many “extras” are missing

« No Ul integration

» No decompression or content handling
* Documentation is incomplete
* Many Cocoa APIs still refuse non-file URLs

NSURLHandle—When to Use It

*You want a simple download abstraction and
URL Access isn’t suitable

» Available to Carbon X apps, t0o!

*You need to add your own scheme handler

NSURLHandle—What’s New

* FTP support added

* Many bugs shaken out

* Asynchronous domain name lookup

* [ntegration with System Configuration
planned for Jaguar

NSNetServices

* Allows you to register and discover services
available on the Net

* Two classes
« NSNetService
e NSNetServiceBrowser

* New in Jaguar
* Implemented on CFNetServices in CFNetwork

CFNetwork

* Low-level abstractions for networking concepts
« NOT a URL library

* APIs in the style of CoreFoundation

® Contains

o« SSI/TLS socket streams
« A full HTTP engine
o Net Services APIs

* Focus on high performance and small footprint

* Used by NSURLHandle, Sherlock, Software
Update, iPhoto, WebServicesCore . . -

CFNetwork—Strengths

* Complete control of the HTTP transaction

« Request can be manipulated directly,
in HTTP-native terms

» You control when bytes are read/written

* HT'TP/1.1 fully supported

« Pipelined, persistent connections
« Digest authentication

* Full runloop integration
(schedule on multiple threads if you want)

* Best performance available above raw sockets

CFNetwork—Limitations

* Not a simple, convenient API
* No FTP support

e [ittle documentation

CFNetwork—When to Use It

*You know the transport is HT'TP
*You want a simple, SSL-encrypted socket

*You want more control than the higher level
APIs provide

*You want to avoid linking higher frameworks
*You need features only in CFNetwork

CFNetwork—What’s New

* HTTP/1.1 persistent connections

* Net services and service discovery APIs
* SOCKS proxy support

* Digest authentication

* Asynchronous hostname lookup

WebServicesCore

* Client framework for web services

* New in Jaguar

* CFNetwork based
o Exports CFTypes
» RunLoop friendly

* Supports aut

nentication options

* HTTP/S POS

" support only

Core Foundation

* Four interesting CFTypes
« CFURL represents a URL string
» CFSocket manages a socket on the run loop

o CFReadStream and CFWriteStream are
one-way byte streams to/from file, socket,
Or memory

* Also some dirt-simple functions for fetching
URLs

Core Foundation—Strengths

* Single abstraction (CFStream) for a variety
of input/outputs

* Strong run loop integration
* Supports a variety of threading models

* CFSocket supports arbitrary socket
configurations

« UDP as well as TCP
o Server as well as client

Core Foundation—Limitations

* API is thin
» Configure sockets via the BSD APIs

» Need higher APIs for more complex
operations

* No way to create new kinds of streams
* Little documentation

Core Foundation—
When to Use It

*You want to manage a socket on the run loop

*You want to abstract away the actual source
or destination of data

*You need to use an API that requires a
CFReadStream or a CFWriteStream

Core Foundation—
What’s New

* CFRead/WriteStreamSetProperty()

* Write callbacks on CFSocket

* More options controlling your CFSocket callback
* Better event dispatching for CFStream

* Asynchronous hostname lookup

e Socket streams errored out on network
configuration change

* SIGPIPE suppressed on socket streams

Open Transport

* Compatibility API for Mac OS 8 and 9

* Intended for easy migration to Mac OS X

* Emulation of Mac OS execution levels costly
» Lots of threads and context switches

* No access to IPv6 and IPSec APIs

* New Mac OS X networking code should
not use OT

[Pv6

* CFSocket is IP-agnostic
« You still must specify which version you want

* CFStream,

CEFNetwork, NSURLHandle, and URL

Access all work with hostnames or URLS
« We do the IPv6 work for you

e Much of t

he IPv6 support is done

* CFURL anc
is planned

NSURL support for IPv6 addresses

http://[2002::11FF:1234::1]/myPage.htmi

s

What’s Next?

Vincent Lubet

The List

Strong End System Model support; Maintainable
APIs for Kernel Extensions; IPv6 Firewall;
Asynchronous name resolution APIs; Easier to
setup 6to4; Easier to setup IKE; Opportunistic
[PSec encryption; PPP v6; DHCP v0; IPv6 fully
supported thorough the system; Zero copy
sockets; Non-privileged ping; PPP dial-in; PPPOA;
Setting of Ethernet media; Change MAC address;
Jumbo frames; EUI-64 MAC address; QoS APIs;
Dummynet; More documentation; . .

Roadmap

100 The Darwin Road Map Room A1
Mon., 2:00pm
803 Mac OS X Networking Overview Room A2
Tue., 9:00am
301 Cocoa: What’s New: Civic
NSURLHandle, NSNetServices Tue., 9:00am
804 Client Web Services Frameworks Room J

Tue., 10:30am

Roadmap

805 Introducing CFNetwork: Room C
Covers CENetwork in depth Tue., 5:00pm
108 Managing Kernel Extensions: Civic
Best practices apply also to NKE Wed., 10:30am
808 Managing I/O:

CFRunLoop and CFStream: Wezoozr?og .
Also includes CFSocket » 450P
809 Advanced Mac OS X Networking: Room C

IPv6, IPSec, NKE, Performance

Thurs., 9:00am

Roadmap

811 Zero Configuration Networking:

Rendezvous: Includes CFENetServices

Room J
Thurs., 2:00pm

FF005 Feedback Forum: Toolbox
For InternetConfig feedback

Room J1
Thurs., 10:30am

FF012 Feedback Forum:

Core OS Networking FrF_*Ogl_T(; 6J1m
General Mac OS X Networking feedback 1., 2:00P
FF016 Feedback Forum: Cocoa Room A1

For NSURL, NSURLHandle feedback

Fri., 5:00pm

Who to Contact

Thomas Weyer

Network and Communications Evangelist
weyer@apple.com

Vincent Lubet

Manager, Core OS Networking Team
viubet@apple.com

’

http:/developer.apple.com/wwdc2002/urls.htmi '

Additional Resources

* Mac OS X

http://developer.apple.com/macosx

* Darwin
http://www.publicsource.apple.com

e Mac N etworkmg% Mailing List
e.

http:/www.lists.app com/malIman/l|st|nfo/macnetworkprog

server.apple

General File & Print

Ch

Thomas Weyer
Apple Worldwide Developer Relations
weyer@apple.com

http:/developer.apple.com/wwdc2002/urls.html

& WWDC2002

& WWDC2002

& WWDC2002

